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In this paper, the behavior of shock-capturing methods in Lagrangian coordinate is inves-
tigated. The relation between viscous shock and inviscid one is analyzed quantitatively,
and the procedure of a viscous shock formation and propagation with a jump type initial
data is described. In general, a viscous shock profile and a discontinuous one include differ-
ent energy and momentum, and these discrepancies result in the generation of waves in all
families when a single wave Riemann problem (shock or rarefaction) is solved. Employing
this method, some anomalous behavior, such as, viscous shock interaction, shock passing
through ununiform grids, postshock oscillations and lower density phenomenon is
explained well. Using some classical schemes to solve the inviscid flow in Lagrangian coor-
dinate may be not adequate enough to correctly describe flow motion in the discretized
space. Partial discrepancies between von Neumann artificial viscosity method and Godu-
nov method are exhibited. Some reviews are given to those methods which can ameliorate
even eliminate entropy errors. A hybrid scheme based on the understanding to the behav-
ior of viscous solution is proposed to suppress the overheating error.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

In the past few decades remarkable progress has been made in the development of numerical methods for solving the
inviscid flow equations. Among many methods two classical schemes for shock capturing are widely used. The first is arti-
ficial viscosity method proposed by von Neumann and Richtmyer [1]; they added sufficient artificial viscosity in the govern-
ing equations to produce shock structures which could be resolved on the scale of the cell size. The second is the Godunov
method [2] which introduces a discontinuity at the cell interface and the Riemann solution is used for the flux evaluation,
followed by the cell average to construct constant states inside each cell.

These two types of schemes are often robust and accurate, however, they can on occasions fail quite spectrally, such as
have startup error, the postshock oscillation, shock instability and wall heating (overheating) phenomenon. In an important
paper, Quirk catalogued a number of situations in which anomalous behavior was known to occur [3] and some papers have
been proposed to explain these phenomena. For example for the postshock oscillations, Roberts found an error consisting of
a long wavelength noise in the downstream running wave families. This error is not effectively damped by the dissipation of
the scheme and may contribute to the slow convergence to steady state case[4]. Jin and Liu explained the postshock oscil-
lations in the context of traveling wave solution and suggested that the momentum spike was the cause for the oscillations
[5]. Karni and Canic regarded that the small viscosity in Roe’s scheme at the shock region contributes to the oscillations, and
derived a parabolic modified equation plus a small perturbation in the shock layer [6]. Arora and Roe interpreted it as that
the intermediate states inside the shock layer did not lie on the Hugoniot curve [7]. Hence, the Riemann solver generated a
whole fan of waves and induced the postshock oscillations. Kun Xu and Jishan Hu ascribed the oscillations to dynamical
. All rights reserved.

956; fax: +86 10 62057289 (Z. Shen).
hen), wyanmath@hotmail.com (W. Yan), lvguixia@126.com (G. Lv).

http://dx.doi.org/10.1016/j.jcp.2010.02.020
mailto:shen_zhijun@iapcm.ac.cn
mailto:wyanmath@hotmail.com
mailto:lvguixia@126.com
http://www.sciencedirect.com/science/journal/00219991
http://www.elsevier.com/locate/jcp


Z. Shen et al. / Journal of Computational Physics 229 (2010) 4522–4543 4523
effects on the projection stage of Godunov method [8]. The unsteadiness of viscosity coefficient rather than the momentum
spike was the main reason of postshock oscillations. They constructed a physical model for the dynamical averaging, derived
the governing equations and quantitatively figured out the time dependent dissipative mechanism in the projection stage for
the moving shock case. All of these explanations are based on Godunov method in Eulerian coordinate system, by now we
have not seen similar explanation in artificial viscosity method.

Wall heating (entropy) error is another famous example, which is usually present in the problem of a strong shock reflect-
ing from a rigid wall or at the sudden start up of a piston. Conventional schemes applied to this problem give numerical
approximations with a consistent Oð1Þ error in the density and internal energy next to the wall. This problem has been stud-
ied since the dawn of simulating shock waves [9] and has been revisited many times ever since then by [10–15]. Noh [10]
investigated the ‘‘excess heating error” in the context of the artificial viscosity approach. With mesh refinement he observed
that the numerical difference solution was essentially unchanged with respect to the wall heating error, and especially the
peak pointwise error was constant in magnitude. This experimentation leads him to conclude that the error is inevitable be-
cause it is built into the exact solution to the differential equations defining the artificial viscosity method. Similar conclu-
sions were attained by Menikoff in [11] when he researched on viscous shock interaction; he noticed that the fronts of some
conservative quantities in viscous shock were not the same and argued that the numerical error was due to the artificial
shock width. His observation led him to conjecture that all shock capturing schemes without significant heat conduction
would have the same type of qualitative entropy error. Rider noticed the different behavior of a wall heating phenomenon
in the Lagrangian or Eulerian coordinates system. The Lagrangian solution always suffers from large overheating error near
the wall for cylindrical and spherical geometry, while using the same method in Eulerian coordinates experiences this phe-
nomenon more slightly. He offered an explanation based on phase error and grid nonuniformity [13].

It is well known that without a full understanding of the nature of a numerical phenomenon, one cannot expect to devel-
op a robust scheme to filter out these kinds of errors very well.

The current work benefits from all previous experiences and focuses on the study of some anomalous phenomena in
Lagrangian formalism, such as wall heating, postshock oscillations. We hope to use a uniform theory to explain such numer-
ical observations. By the idea borrowed from Menikoff [11], we perform an analysis of traveling wave shock profile with von
Neumann viscosity and ascribe the error to asymptotic initial shock layer when shock transforms from discontinuous data to
viscous profile. The viscous solution with constant propagation velocity may include different momentum or energy with
inviscid solution. These discrepancies will be described by those quantities: the relative distance, momentum, and energy
between viscous shock wave and inviscid shock wave. Our method and that in [11] are different in that these quantities
are defined in mass coordinate and therefore they have simpler expression than those in [11]. Our analysis is based on linear
viscosity rather than quadratic viscosity in order to compare better with Godunov method. The solution with linear viscosity
loses compact support shock transition zone, so it is more difficult to describe the concept of total energy and momentum of
this zone. The theory are used to explain much anomalous phenomena.

The relative energy and dissipation mechanism in a numerical scheme are the source of overheating/cooling (wall heat-
ing/cooling) errors. For the problems whose relative energy can be computed exactly, the behavior of viscous solution may
be forecast in some situations. But the relative energy and momentum do not result in postshock oscillations directly, the
unsteadiness of viscosity term is the cause of such behavior. Just like pointed out in [7], the postshock oscillations are inev-
itable in numerical calculation. Moreover we think the concrete amplitude depends on the competition between magnitude
of relative momentum(energy) and ability of the dissipation. Using these ideas, some anomalous numerical artifacts, such as
wall heating, oscillations in shock wave interaction and in shock wave passing through nonuniform grids can be explained
well. These ideas can be also extended to other viscous equations and other problems, such as Godunov type Lagrangian
method and viscous rarefaction wave problem.

There are lots of numerical schemes in Godunov method regime. Instead of guessing the underlying wave equations for
the ‘‘numerical fluids”, we research modified equations from Godunov method based on some approximate Riemann solvers.
Due to the different viscosity mechanism with artificial viscosity method, the results of the viscous shock interaction and
behavior of postshock oscillations are slightly different.

Since all anomalous behavior in shock capturing schemes is due to viscosity and dissipative mechanism, decreasing the
effects of viscosity and diffusing the error to the whole solution are two main methods to ameliorate such errors in compu-
tation. High resolution Godunov method can effectively ameliorate the overheating errors in rarefaction waves and shock
propagation, but fail in shock collision problem. The HLL type method [16] can diffuse entropy error but suffer from itself
large viscosity. For example, the entropy errors are still obvious for some rarefaction wave problems. To combine the advan-
tages of both schemes, a simple hybrid Godunov method is proposed to suppress the overheating error.

In Section 2, the inviscid gas dynamics equations in Eulerian and Lagrangian frames are given; the viscous equations arose
from artificial viscosity method and some kinds of approximate Riemann solver Godunov method are described. In Section 3
the traveling shock wave structures of different viscous equations are analyzed; the relative distance, relative momentum
and relative energy established in mass coordinate are introduced. The formation and propagation process of a viscous shock
with jump type initial data is described and analyzed in Section 4, and many numerical evidences are illustrated. Further-
more variable viscosity is considered in Section 5. The behavior of shock passing through ununiform grids and postshock
oscillations are explained. A rarefaction wave problem is considered in Section 6. Finally some methods to ameliorate or
eliminate entropy and momentum errors are reviewed and partial results are exhibited numerically. A hybrid method to de-
duce the entropy error is proposed in Section 7.
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The calculation in artificial viscosity method of this paper is performed with the G1DE code which comes from a floppy
diskette attached to book [17]. The code uses a support operator algorithm with stagger spatial and temporal step. The arti-
ficial viscosity uses constant or linear Landshoff viscosity [18]. A tiny modification to G1DE in solving isentropic equations is
made. The numerical results obtained by Godunov method in this paper use exact Riemann solver except some special dec-
larations. The algorithms for the Godunov methods in this paper are described in Appendix B.
2. Governing equations

Let’s consider the gas dynamics equations for inviscid compressible fluid
qt þ ðquÞx ¼ 0;

ðquÞt þ ðqu2 þ PÞx ¼ 0;
ðqEÞt þ ðqEuþ PuÞx ¼ 0;

ð1Þ
where q; E and u denote the density, the specific total energy and the fluid velocity, respectively. We denote by e ¼ E� 1
2 u2

the specific internal energy and P the pressure given by the ideal gas equation of state (EOS) P ¼ ðc� 1Þqe, here c is specific
heat ratio. The eigenvalue of the Jacobian matrix in this system are k1 ¼ u� c; k2 ¼ u; k3 ¼ uþ c, where c ¼ cp=q is sound
speed. They correspond to two nonlinear acoustic waves (1-wave and 3-wave, shock or rarefaction wave) and a linear degen-
erate entropy wave (2-wave, contact discontinuity). The corresponding right eigenvectors are
r1 ¼
1

u� c

H � uc

264
375; r2 ¼

1
u

u2=2

264
375; r3 ¼

1
uþ c

H þ uc

264
375;
respectively, where the total specific enthalpy is H ¼ Eþ P=q.
By introducing the Lagrangian coordinate n given by n ¼

R x
x0ðtÞ

qðz; tÞdz, where x0ðtÞ denotes the Eulerian coordinate of a
given fluid particle, the Euler Eq. (1) can be transformed into Lagrangian form
st � un ¼ 0;
ut þ Pn ¼ 0;
Et þ ðPuÞn ¼ 0;

8><>: ð2Þ
where s ¼ 1=q is the specific volume. When the EOS is for ideal gas, i.e., P ¼ ðc� 1Þqe, the Jacobin matrix of Eq. (2) [19,20] is
JM ¼
0 �1 0
�P=s �ðc� 1Þu=s ðc� 1Þ=s
�Pu=s P � ðc� 1Þu2=s ðc� 1Þu=s

264
375:
The right eigenvectors of the Jacobin matrix are
r1 ¼
1
qc

qcu� P

264
375; r2 ¼

1
0

P=ðc� 1Þ

264
375; r3 ¼

1
�qc

�qcu� P

264
375; ð3Þ
and the eigenvalues are k1 ¼ �qc; k2 ¼ 0; k3 ¼ qc, respectively.
Under the assumption that the entropy is constant everywhere, Eq. (2) can be simplified into an isentropic model

(p-system)
st � un ¼ 0;
ut þ Pn ¼ 0;

�
ð4Þ
where the EOS is P ¼ Aqc; A is a constant. For this 2� 2 system, the nonlinear characteristic field includes two waves
r1 ¼
1
qc

� �
; r2 ¼

1
�qc

� �
; ð5Þ
traveling with speeds which are equal to the eigenvalues k1 ¼ �qc; k2 ¼ qc, where the sound speed c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cAqc�1

p
.

In order to distinguish the Eq. (2) from (4), we call fully Euler Eq. (2) as adiabatic models or adiabatic equations disregard-
ing strictness hereafter.
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3. Numerical methods and viscous equations

3.1. Artificial viscosity method for adiabatic equations

von Neumann presented an artificial viscosity method for solving compressible adiabatic equations. The numerical meth-
od employs stagger grid in time and space to keep the discrete error in second order with following viscous equations:
st � un ¼ 0;
ut þ ðP þ qÞn ¼ 0;
Et þ ððP þ qÞuÞn ¼ 0;

8><>: ð6Þ
where q is an artificial viscosity pressure in quadratic form [1]
q ¼ e2qð@u=@nÞ2; if @u=@n < 0;
0; others;

(

or linear form [18]
q ¼
�eqc0ð@u=@nÞ; if @u=@n < 0;
0; others;

�
ð7Þ
where e is the viscous coefficient, c0 is a constant adiabatic speed of sound. For both viscosity forms there exist explicit trav-
eling shock wave solutions when e is constant.

For a right facing shock wave U, the left and right states (after and before the shock) are
lim
n!�1

Uðn;0Þ ¼ UL ¼ ðsa;ua; Pa; EaÞT ;

lim
n!þ1

Uðn;0Þ ¼ UR ¼ ðsb;ub; Pb; EbÞT ;
ð8Þ
respectively. Let s be the shock velocity in Lagrangian coordinate, then from Rankine–Hugoniot conditions there are
u ¼ ua � sðs� saÞ ¼ ub � sðs� sbÞ;
P þ q ¼ Pa þ sðu� uaÞ ¼ Pb þ sðu� ubÞ;
Puþ qu ¼ Paua þ sðE� EaÞ ¼ Pbub þ sðE� EbÞ:

8><>: ð9Þ
Here we just give a traveling shock structure for linear form viscosity, as to a quadratic viscosity form, see Appendix A. At the
initial states (8), the viscous profiles of transition zone of (7) are
s ¼ sb þ sa

2
þ sb � sa

2
eax � 1
eax þ 1

;

u ¼ ub þ ua

2
þ ub � ua

2
eax � 1
eax þ 1

;

P þ q ¼ Pb þ Pa

2
þ Pb � Pa

2
eax � 1
eax þ 1

;

E ¼ Eb þ Ea

2
þ Eb � Ea

2
eax � 1
eax þ 1

� ðub � uaÞ2
eax

ðeax þ 1Þ2
;

ð10Þ
where a ¼ ðcþ1Þðua�ubÞ
2ec0

; x ¼ n� st.
Solution (10) shows that the linear viscosity acts throughout the flow, and the viscous shock width is infinite. Actually

when e is very small, the solution (10) approaches an inviscid shock rapidly. Define an effective shock transition zone as
fn : jsðnÞ � sajP e0jsb � sajg [ fn : jsðnÞ � sbjP e0jsb � sajg;
where e0 > 0 is a small parameter. Then the effective shock width is

4ec0

ðcþ 1Þsðsb � saÞ
ln

1� e0

e0
; ð11Þ
where the width depends on shock strength sðsb � saÞ.
Similar to the idea of Menikoff [11], we define the shock positions of viscous profiles of specific volume, velocity and en-

ergy as ns
s ; nu

s ; nE
s , so that
Z ns

s

�1
ðs� saÞdnþ

Z 1

ns
s

ðs� sbÞdn ¼ 0; ðiÞZ nu
s

�1
ðu� uaÞdnþ

Z 1

nu
s

ðu� ubÞdn ¼ 0; ðiiÞZ nE
s

�1
ðE� EaÞdnþ

Z 1

nE
s

ðE� EbÞdn ¼ 0: ðiiiÞ

ð12Þ
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These front positions describe a shift between inviscid shock and viscous shock.
Substituting the analytical solution (10) into (12) in a moving mass coordinate system with velocity s gives
−1

0

0.2

0.4

0.6

0.8

1

Fig. 1.
energy.
ns
s ¼ nu

s ¼ 0 > nE
s ¼ �

ðua � ubÞ2

ðEa � EbÞa
¼ � 2ðua � ubÞ
ðcþ 1ÞðEa � EbÞ

ec0: ð13Þ
This means the front of velocity profile is the same as that of specific volume, and the energy front gets behind that of
specific volume along shock propagation direction. We denote relative distance between the fronts of velocity, energy
and specific volume profiles by
dus ¼ nu
s � ns

s ¼ 0;

dEs ¼ nE
s � ns

s ¼ �
2ðua � ubÞ

ðcþ 1ÞðEa � EbÞ
ec0: ð14Þ
Fig. 1(a) gives the velocity and energy profiles of solution (10) for the Noh problem [10]. The energy front drops behind the
velocity one for the right facing shock. This is seen much more clearly in Fig. 1(b), which shows the same solution on a dif-
ferent scale.

Define relative momentum and energy of viscous shock between the two fronts as
dM ¼
Z ns

s

�1
ðu� uaÞdnþ

Z 1

ns
s

ðu� ubÞdn;

dE ¼
Z ns

s

�1
ðE� EaÞdnþ

Z 1

ns
s

ðE� EbÞdn:
There is
dM ¼ dusðua � ubÞ ¼ 0;

dE ¼ dEsðEa � EbÞ ¼ �
ðua � ubÞ2

a
¼ �2ðua � ubÞ

ðcþ 1Þ ec0:
ð15Þ
The relative energy dE depends linearly on the relative distance dEs and viscous coefficient e. In addition, there are two
properties for relative distance: (i) dE is a function of the shock strength, i.e., dE � ðub � uaÞ for linear viscosity,
dE � ðub � uaÞ2 for quadratic viscosity (see Appendix A). (ii) dE is a function of the specific heat ratio.

In summary, let VTðUÞ ¼
R1
�1 sdn; MTðUÞ ¼

R1
�1 udn; ETðUÞ ¼

R1
�1 Edn represent total volume, momentum and total energy

of a solution U ¼ ðs;u; EÞ, respectively, then

Remark 1. If we define an inviscid shock U0 at ns
s with initial discontinuous data (8), then there are
VTðU0 � UÞ ¼ 0;
MTðU0 � UÞ ¼ 0;
ETðU0 � UÞP 0;

8><>:
−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

velocity
total energy
inviscid shock

−0.25 −0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2 0.25

0

0.2

0.4

0.6

0.8

1

velocity
total energy
inviscid shock

Velocity and energy distribution inside shock layer from solution (10), solid line is discontinuous shock, dotted line is velocity, and dash-dotted is
Right is magnification of the same results.
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where U is the viscous shock (10). That means, total volume and momentum of viscous shock are the same as that of U0, but
total energy of steady state shock is less than U0.
3.2. Artificial viscosity method for isentropic equations

The numerical method for isentropic Eq. (4) is the same as (6) except energy equation. So the viscous Navier Stokes equa-
tions are
st � un ¼ 0;
ut þ ðP þ qÞn ¼ 0;

(
ð16Þ
in which viscosity term q has the same form as (7). In a right face traveling shock at speed s, the initial physical quantity
U ¼ ðs;uÞT satisfies
lim
n!�1

Uðn;0Þ ¼ UL ¼ ðsa;uaÞT ;

lim
n!þ1

Uðn;0Þ ¼ UR ¼ ðsb;ubÞT :
ð17Þ
Then according to Hugoniot conditions, there are
u ¼ ua � sðs� saÞ ¼ ub � sðs� sbÞ;
P þ q ¼ Pa þ sðu� uaÞ ¼ Pb þ sðu� ubÞ:

�
ð18Þ
This 2� 2 system includes two profiles: the specific volume and velocity ones. Define the shock positions of viscous profiles
of specific volume and velocity as ns

s ; nu
s , where
Z ns

s

�1
ðs� saÞdnþ

Z 1

ns
s

ðs� sbÞdn ¼ 0; ðiÞZ nu
s

�1
ðu� uaÞdnþ

Z 1

nu
s

ðu� ubÞdn ¼ 0: ðiiÞ ð19Þ
It is unnecessary to write out the explicit solution of (16). According to Rankine–Hugoniot conditions (18), we get ns
s ¼ nu

s .
If we define relative distance and momentum as Section 3.1, then the relative distance between the specific volume and
velocity profiles vanish. Since the energy equation is redundant, both the relative distance between the specific volume
and energy profiles and relative energy do not exist.

3.3. Godunov method for isentropic equations

Godunov method does not define explicit viscosity. It solves Riemann problem at cell interface at first and then makes cell
average. We will see below that the dissipative mechanism is similar to that of artificial method, but more complex.

Consider a general system of conservative laws
@U
@t
þ @F
@n
¼ 0: ð20Þ
The Godunov method is
Unþ1
j ¼ Un

j �
Dt
Dn

Fjþ1=2 � Fj�1=2
� �

; ð21Þ
where Dt and Dn are temporal and spatial steplength. The numerical flux for most shock-capturing methods can be written
as
Fjþ1=2 ¼
1
2

Fj þ Fjþ1
� �

� Qjþ1=2DUjþ1=2; ð22Þ
where DUjþ1=2 ¼ Ujþ1 � Uj, and Qjþ1=2 is a general numerical viscosity matrix.
Applying (22) to (21) one gets viscous modified equation
@U
@t
þ @F
@n
¼ @

@n
DnQ

@U
@n

� 	
:

For isentropic Eq. (4), U ¼ ðs;uÞT ; F ¼ ð�u; PÞT . Using different Riemann solvers will result in different modified equations.
For example, by using primitive variable Riemann solver [21], the fluxes are
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ujþ1
2
¼ 1

2
ðuj þ ujþ1Þ þ

1
2

Pj � Pjþ1
� �

=qc;

Pjþ1
2
¼ 1

2
ðPj þ Pjþ1Þ þ

1
2

uj � ujþ1
� �

qc;
ð23Þ
where q ¼ 0:5ðqj þ qjþ1Þ; c ¼ 0:5ðcj þ cjþ1Þ. Substituting these fluxes into (21) and making Taylor expansion, we can obtain a
first order modified Lagrangian system according to this kind of Godunov scheme
st � un ¼ �ðe1PnÞn;
ut þ Pn ¼ ðe2unÞn;

(
ð24Þ
where e1 ¼ Dn=ðqcÞ; e2 ¼ Dnqc are variable viscous coefficients.

Remark 2. Although the Godunov schemes have different forms for isentropic equations, such as using exact Riemann
solver, Roe approximate solver [22] and HLL solver [23] etc., they all belong to a two-wave configuration for a hyperbolic
system of two equations. So the first order modified equations have unique form (24). The discrepancies of different modified
equations appear in higher order expansion terms.
Consider a right facing traveling shock wave solution at speed s with limiting state ðsa;uaÞ and ðsb;ubÞ, [see (17)], then by
Rankine–Hugoniot jump conditions there are
u� e1Pn ¼ ua � sðs� saÞ ¼ ub � sðs� sbÞ;
P � e2un ¼ Pa þ sðu� uaÞ ¼ Pb þ sðu� ubÞ:

�

Similarly define the shock positions of viscous profiles of specific volume and velocity by (19). Substituting the formulae
u� ua ¼ e1Pn � sðs� saÞ;u� ub ¼ e1Pn � sðs� sbÞ
into (19), we can obtain the relative distance between the front of velocity and specific volume profiles as
dus ¼ nu
s � ns

s ¼
R1
�1 e1Pndn

sðsb � saÞ
< 0:
The relative momentum between the two fronts is
dM ¼ dusðua � ubÞ ¼
Z 1

�1
e1Pndn:
3.4. The Godunov method for adiabatic equations

From the viewpoint of modified equations, the Riemann solvers in Godunov method for adiabatic equations can be clas-
sified into two distinct categories. One is the three-wave solvers which can exactly resolve contact discontinuities, such as
exact Riemann or HLLC solvers etc. [23]. Another is to assume a wave configuration for the solution which consists of two
waves separating three constant states, which includes Lax–Friedrichs or HLL solver, etc. [23].

If we choose an approximate Riemann solver as (23), and the flux F ¼ ð�u; P;uPÞT is obtained by this Riemann solver, then
the first order modified equations for adiabatic models (2) are
st � un ¼ �ðe1PnÞn;
ut þ Pn ¼ ðe2unÞn;
Et þ ðPuÞn ¼ ðe1PPnÞn þ ðe2uunÞn:

8><>: ð25Þ
where e1 ¼ Dn=ðqcÞ; e2 ¼ Dnqc.
Suppose that a right facing shock wave at constant speed s exists, and its left and right limiting states are (8), then in the

shock profile there are
u� e1Pn ¼ ua � sðs� saÞ ¼ ub � sðs� sbÞ;
P � e2un ¼ Pa þ sðu� uaÞ ¼ Pb þ sðu� ubÞ;
Pu� e1PPn � e2uun ¼ Paua þ sðE� EaÞ ¼ Pbub þ sðE� EbÞ:

8><>: ð26Þ
Define the shock positions of viscous profiles of specific volume, velocity and energy by (12). By similar analysis in Section
3.3, we know that the relative distance between the front of velocity and specific volume profile is
dus ¼

R1
�1 e1Pndn=sðsb � saÞ, and the relative momentum is dM ¼

R1
�1 e1Pndn.

The analysis of relative energy is difficult. By now there has not been any known expression of a traveling solution for this
system of viscous equations like (10), so the shock position of energy profile cannot be determined exactly. In general, the
shock position of energy profile does not coincide with that of specific volume profile. For example, when e1 ¼ 0, the system
is degenerated into artificial viscous equations, in which relative energy is nonvanishing.
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The approximate Riemann solution (23) corresponds to a HLLC scheme with the signal velocities �qc. If we adopt a HLL
scheme with the same signal velocities, the numerical flux is
� ujþ1
2
¼ �1

2
uj þ ujþ1
� �

� 1
2
qcðsjþ1 � sjÞ;

Pjþ1
2
¼ 1

2
Pj þ Pjþ1
� �

� 1
2
qc ujþ1 � uj
� �

;

ðPuÞjþ1
2
¼ 1

2
ðPuÞj þ ðPuÞjþ1


 �
� 1

2
qc Ejþ1 � Ej
� �

:

ð27Þ
From the flux form, the modified equations of the HLL scheme can be obtained as
st � un ¼ �ðesnÞn;
ut þ Pn ¼ ðeunÞn;
Et þ ðPuÞn ¼ ðeEnÞn;

8><>: ð28Þ
where e ¼ Dnqc. If a right facing shock wave with constant speed s exists, then in the shock profile there are
uþ esn ¼ ua � sðs� saÞ ¼ ub � sðs� sbÞ;
P � eun ¼ Pa þ sðu� uaÞ ¼ Pb þ sðu� ubÞ;
Pu� eEn ¼ Paua þ sðE� EaÞ ¼ Pbub þ sðE� EbÞ:

8><>: ð29Þ
Similar to the previous analysis, we know that the relative distance between the velocity and specific volume profiles is
dus ¼ �

R1
�1 esndn=sðsb � saÞ, and the relative momentum is dM ¼ �

R1
�1 esndn. In general, the relative distance between en-

ergy profile and specific volume profile is nonvanishing, thus the relative energy no longer vanishes.
4. Behavior of viscous solution

If initial data corresponds to the viscous profile (10), the shock structure of (3) is the steady traveling wave (10). But for
the jump type initial data, the solution does not correspond to the profiles in the viscous steady shock, therefore some recon-
structions of the profiles begin, as a result, the solution asymptotically reaches the regime of shock structure.

4.1. Generation of entropy errors

The basic assumption is from [11]: when the fluid equations are regularized by a viscous dissipation term, a shock wave
approaches its asymptotic traveling wave profile very rapidly. In fact this is a necessary condition for shock capturing algo-
rithms in numerical method.

Such traveling shock profiles accumulate different energy from hyperbolic solution. The distribution manner of the extra
energy depends on the dissipative mechanism of viscous equations. We will describe formation and propagation process of a
viscous shock wave for von Neumann artificial Eq. (6) when exact discontinuity is used in initial data.

The evolution of viscous shock can be regarded as singular perturbation problem, the total time process can be decom-
posed into a fast and slow time scale [24,11]. On each scale the wave structure is the competing result of dissipative effect
and hyperbolic property simultaneously.

Over the fast time scale, (effective shock width)/(shock velocity), the initial discontinuity U0 is smoothed. On the one
hand, viscosity results in the solution going to a stable traveling shock wave structure U. The fronts of the specific volume
and energy U separate gradually from each other, and the relative distance and relative energy between these two fronts
quickly change from 0 to dEs and from 0 to dE. On the other hand, according to Remark 1, the energy of viscous shock U
is less than that of U0. To satisfy energy conservation law, a perturbation U1 is sure to be generated. U1 propagates along
the nonlinear acoustic wave and entropy wave, and diffuses to whole solution simultaneously. In addition, U1 satisfies
the following relations
VTðU1Þ ¼ VTðU0 � UÞ ¼ 0;
MTðU1Þ ¼ MTðU0 � UÞ ¼ 0;
ETðU1Þ ¼ ETðU0 � UÞ > 0:
Under the interaction of dissipative mechanism ðunnÞ, the particle velocity in U1 will be smoothed out rapidly and go to
constant velocity state, but the particle velocity in U still preserves large gradient profile. Along with particle velocity of solu-
tion U1 approaching to a constant, the pressure equilibrates to its values behind the shock almost at the same time. In the
viscous adiabatic problem (6), due to lack of dissipation in energy, the energy in U1 does not tend to be constant with the
same rate of pressure equilibrium. Once velocity and pressure approach to constants, the energy and density will preserve
their configuration almost invariably. There is a rise in energy near the contact wave. According to the equation of state
P ¼ ðc� 1Þqe, a dip in density occurs.
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On the slow time scale, the wave structure of viscous solution approaches the traveling shock wave asymptotically, and
the relative distance between specific volume and energy fronts is close to a constant. New perturbation U1 becomes so small
that it can be negligible compared with those made on the fast time scale.

In summary, due to pressure and particle velocity approaching equilibrium, the perturbation U1 forms its shape mainly on
the fast time scale. The contribution on the slow time scale exists but small. A nonlinear acoustic wave error occurs near 1-
wave, an overheating error flows with fluid particle as 2- wave (hereafter we also call it entropy error or overheating error),
and the stable traveling shock is 3-wave. This discontinuity decomposition in viscous equations with small e is similar to a
general Riemann problem decomposition, which results in the generation of a whole fan of waves, and not just a 3-wave as
expected from the initial data. When viscous coefficient is constant in Eq. (6), the relative energy does not result in postshock
oscillations.

Remark 3. In viscous adiabatic Eq. (6), the overheating error locates near contact discontinuity and distributes in a region of
dðeÞ, where dðeÞ depends on the initial layer time and viscosity. There is not any knowledge about its distribution form. We
will assume that the entropy error has a ‘‘smoothed” squared wave distribution if it is not dissipated by acoustic wave, then
the peak value of such error is about
EmaxðU1Þ � C dE=dðeÞ: ð30Þ
In numerical computation, the steady overheating error always distributes in a few grids. According to the above assump-
tion, if the error is not dissipated by acoustic wave, then the peak value is about
EmaxðU1Þ � C dE=Dn; ð31Þ
where C is a constant and Dn is mesh spacing in the mass coordinate. The relation (31) will be verified by some numerical
experiments in Section 4.2.
4.2. Numerical evidences

The relative energy formula and viscous shock structure in Section 4.1 can be checked by the numerical experiments. To
avoid overheating error dissipated by propagation of 1-wave, we consider Noh problem [10] which is equivalent to a Rie-
mann problem with an initial constant velocity directed towards each,
UL ¼ ðq;u; P; EÞL ¼ ð1;1;0;0:5Þ; if x < 0:5;

UR ¼ ðq;u; P; EÞR ¼ ð1;�1;0; 0:5Þ; if x > 0:5;
where specific heat ratio is 5/3. The 1-wave and 3-wave are shock waves, so relative energy concentrates on 2-wave. The
exact solution consists of two symmetric shocks whose velocities are 4/3 and �4/3, respectively. The density and total en-
ergy of the postshock are 4 and 0.5, respectively.

Case 4.1. We use the same grid (400 zones) but different linear viscosity coefficients
Dt ¼ 10�4; e ¼ kDn:
The numerical energies at k ¼ 2:5; 3:0; 3:5 are given in Fig. 2. Since the initial density is 1, the physical spacing
Dx ¼ qDn ¼ Dn. According to (15), the relative energy is a linear function of viscosity coefficient e. By Remark 3, the peak
values of overheating errors are almost in proportion to the factor k in viscosity coefficient. Fig. 3 gives some peak values
of energies with respect to different k. The results coincide with (31) well. Note that such linear relation holds only under
the circumstance of these viscous coefficients being on a certain range.

Case 4.2. Using a fixed viscosity coefficient factor e ¼ 1:2Dn but with different grids Dn, the results are given in Fig. 4. The
three cases are
Dt1 ¼ 10�3; Dn1 ¼ 0:01; Dt2 ¼ 5:0� 10�4; Dn2 ¼ 0:005; Dt3 ¼ 2:5� 10�4; Dn3 ¼ 0:0025:
The magnitude of overheating errors is almost the same, but the overheating error in spatial range decreases with grid
refined. Similar numerical experiments lead Noh [10] to conclude that the error is built into the exact solution of viscous
equations.

Remark 4. From the analysis in Section 4.1 and above numerical experiments, for any fixed e the viscous shock solution with
discontinuous initial data will not converge to a single viscous shock in L1 as time goes to infinity. In addition, when
Dt=Dn ¼ constant and Dn! 0, the numerical solution will converge to an inviscid limit. The Case 4.2 shows that the viscous
shock solution with constant peak value entropy error will not converge to a discontinuous shock solution in L1 as e! 0 (see
[11,10]).
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Case 4.3. Consider the following shock reflection problems with initial conditions:
UL ¼ ðq;u; P; EÞL ¼ ð4;1;4=3;1Þ; if x < 0:2;

UM ¼ ðq;u; P; EÞM ¼ ð1;0;0; 0Þ; if 0:2 < x < 0:8;

UR ¼ ðq;u; P; EÞR ¼ ð4;�1;4=3;1Þ; if x > 0:8;
where specific heat ratio is 5/3. The head-on collision problem of two equal strength shock waves is equivalent to shock
reflecting from a rigid wall exactly for inviscid hydrodynamic equations. That means it is equivalent to the following Rie-
mann problem:
UL ¼ ðq;u; P; EÞL ¼ ð4;1;4=3;1Þ; if x < 0:5;

UR ¼ ðq;u; P; EÞR ¼ ð4;�1;4=3;1Þ; if x > 0:5:
The reflective shock has the state:
U ¼ ðq;u; P; EÞ ¼ ð10; 0;8;1:2Þ:
But viscous shock behavior would be different for these processes. In fact, it includes two physical processes(see Fig. 5).
When the viscous incident shock interacts on the rigid wall (state (0) to state (1)), the relative distance decreases, and the
absolute value of relative energy increases, which is dEi ¼ 2

ðcþ1Þ ec0. The viscous shock wave contains more energy than that
with constant relative distance, so the overcooling phenomenon will appear. When the reflected shock leaves the rigid wall
(state (1) to state (2)), the relative distance increases and the solution approaches to constant velocity traveling wave, and
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the released relative energy in traveling wave solution is dER ¼ � 2
ðcþ1Þ ec0. In principle the two effects should exactly cancel

out, but numerically they typically illustrate the wall heating phenomenon. The reason is as follows: the partially added en-
ergy in incident shock profile is deficit by its acoustic wave propagation to postshock, but the reduced relative energy in re-
flected shock almost preserves all entropy error near the rigid wall, so the total effect exhibits the wall heating phenomenon.
Fig. 6 gives energy and density solutions, in which the overheating errors are obvious. But this conclusion is not true to other
viscous equations and other numerical methods. We will see the different results in Section 4.3.
4.3. Extension to other viscous equations

The shock generation process for artificial viscosity Eq. (6) also can be extended to other viscous equations.
For viscous isentropic Eq. (16), there is no relative distance, relative momentum and energy. That means there is no dif-

ference between viscous solution and hyperbolic solution in integral meaning. What will happen when jump type initial val-
ues are used? Whether there exists a single viscous shock family? Hoff and Liu provided a picture to qualitative properties of
this solution [24]: in a very short time, the initial discontinuity decays exponentially in time. For intermediate time the solu-
tion is approximated well by solutions of Burgers equation, appropriately lifted to phase space. For large time, the solution
coincides with the viscous traveling wave solution very well. From the picture we can conclude that the viscous solution
keeps the monotony and convergence to a single viscous shock as time goes to infinity. But in our numerical experiments
using artificial viscosity method, a perturbation U1 can be always observed near 1-wave, and is dissipated soon in time.
How to explain such perturbation generation is still an open problem. We call such error as high order one in integral mean-
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ing compared with overheating error as first order error. In viscous adiabatic Eq. (6), the perturbation U1 includes such high
order error (start up error).

For viscous isentropic Eq. (24), the relative momentum exists. During the fast time scale, 1-wave error is generated. Under
the interaction of dissipative mechanism ðunnÞ, the 1-wave error will be smoothed out rapidly. Due to the relative momentum
vanishing in (16) but not so in (24), the strength of perturbation U1 is different. This will be exhibited in the postshock oscil-
lation numerical experiments in Section 5.2.

Remark 5. For any fixed e, the viscous shock solution in (24) with discontinuous initial data will not converge to a single
viscous shock in L1 as time goes to infinity.
ation is more complex. The viscous solution includes relative momentum and relative energy. During the fast time process, a

For viscous adiabatic Eq. (25) obtained from Godunov scheme, the dissipative mechanism is similar to (6), but the situ-

perturbation U1 is generated and decomposed into acoustic wave errors and an entropy wave error. Under the interaction of
dissipative mechanism unn and Pnn, the particle velocity and pressure in U1 will approach to constants rapidly, but the particle
velocity and pressure in U still preserve large gradient profile. Due to lack of dissipation in energy, the energy in U1 will pre-
serve their configuration almost invariably. If relative energy is negative, there will be a wall heating error near the contact
wave, otherwise a wall cooling phenomenon will appear. In the viscous equations, viscous term Pnn will help to attain pres-
sure and velocity equilibrium more quickly than that from von Neumann artificial viscosity method will do.

In numerical Godunov method, the dissipation is implicit, and viscous coefficient is no longer constant. The uncontrolla-
ble and adaptive viscosity in (25) may become a latent harmful factor, but also may lessen extent of error. Let us use a shock
interaction example in Section 4.2 to illustrate its complexity.

Fig. 6 compares the difference between Godunov method and von Neumann method when viscous shock interaction is
computed. The artificial viscosity method always exhibits overheating phenomenon, while Godunov method has an overco-
oling error. It shows that the relative energy during the incident process from state (0) to (1) (see Fig. 5) is larger than that
during the reflective process, i.e., jdEij > jdERj.

5. Effect of variable viscosity

So far we have just discussed the case in which viscosity e is constant. Now we want to know what will happen when e
varies. Without loss of generality, we just discuss Eq. (6) with artificial viscosity (7). Suppose that there is a stable viscous
shock propagation at constant speed s, we denote its relative energy by dEold . If e changes, for example increases, then tran-
sition zone of viscous shock will increase, so perturbation U1 is generated. The viscous effect decays the perturbation into
whole domain. Whether there is visible oscillatory phenomenon depends on the balance between oscillation amplitude
and dissipation velocity. For the adiabatic problem the relative distance between different fronts increases, and the relative
energy in new traveling shock satisfies dEnew < dEold. The energy in previous stable profile will release and give rise to ‘‘wall
heating” phenomenon. If wave strength is large enough or e changes acutely, then the dissipation term in von Neumann
method usually cannot prevent postshock oscillations. Conversely when e decreases, the solution will experience overcool-
ing effect, i.e., a rise in density and a dip in energy. Similar analysis can be extended to the other viscosity equations. Two
examples are exhibited below.
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5.1. Nonuniform grid

During numerical calculation mesh variation will produce such effect: as a shock passes through a mesh spacing changing
from a finer to a coarser or reverse, the viscous coefficient as a function of mesh spacing will change.

Consider a planar shock crossing the boundary between a coarser to a finer mesh and back from a finer to a coarser mesh
[25]. A computational solution for classical Noh problem is shown for two 2:1 mesh variations in Fig. 7(a). The problem is set
up as follows:

Case 5.1
0.65
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x 2 ð0;20=65� [ ð45=65;1�; Dx ¼ 1=65;

x 2 ð20=65;30=65� [ ð35=65;45=65�; Dx ¼ 1=130;

x 2 ð30=65;35=65�; Dx ¼ 1=200;

8><>:

where a piston with velocity 1 pushes a rest gas with state U ¼ ðq;u; PÞ ¼ ð1;0;10�6Þ. Notice here initial spatial steplength is
Dx ¼ Dn, and the viscosity coefficient is selected as e ¼ 1:5Dn; c0 ¼ 1.

The overheating phenomenon occurs precisely where the mesh increases its spacing and grows worse as the size of the
mesh variation grows. Conversely, the solution experiences overcooling where the mesh is refined. In this figure
perturbation which propagates through acoustic wave (1-wave) is not obvious due to dissipative.

For the viscous isentropic equations, the sudden change of viscosity e causes new wave family generated. Fig. 7(b) gives
the result of following example.

Case 5.2. A piston with velocity 1 pushes a rest gas with state U ¼ ðq;uÞ ¼ ð1;0Þ, where pressure P ¼ qc; c ¼ 5=3. The other
conditions are the same as Case 5.1, such as grid, spatial and temporal steplength and viscosity coefficient.

The exact solution is still a single shock. Since there does not exist relative distance, downstream oscillation is generated
but amplitude is small.
5.2. Postshock oscillations

From mathematical analysis in Section 4.1, it is shown that there is no oscillations generated in constant e viscous equa-
tions. However almost all shock capturing schemes for the moving shocks give postshock oscillations. Xu and Hu ascribe it to
the unsteadiness of dissipative mechanism [8]. We agree on their argument completely and complement more details in
Lagrangian framework. For the Godunov method, the viscosity term is introduced by cell average, which is implicit and adap-
tive to physical quantities (density and sound speed). When shock moves in a mesh during many time steps (slowly moving
shock case), the cell average results in the viscosity variation. Therefore postshock oscillation is generated. The relative
momentum and energy enlarge the oscillation amplitude. For the artificial viscosity method, how to explain postshock oscil-
lation is difficult in the case of constant viscosity coefficient and uniform grid. In fact in slowly moving shock case the en-
tropy error generating zone and viscous shock transition zone stick all the time. The velocity gradient obtained by finite
difference in the vicinity of shock cell always gives rise to changes of viscous coefficients. It is such unsteadiness that results
in postshock oscillation.
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A worthwhile discussion is isentropic equations with constant viscosity coefficient. Both its relative energy and relative
momentum vanish in this case. In principle the postshock oscillations should not exist when using the artificial viscosity
method and uniform grid. Since the numerical velocity gradient may vary near shock cell, there are some perturbations gen-
erated along with viscosity variety. But the extent of the oscillations is so small compared with Godunov method that the
oscillations are almost invisible in some cases.

Case 5.3. Consider a Riemann problem
UL ¼ ðq;uÞL ¼ ð1;10Þ; if x < 0:5;

UR ¼ ðq;uÞR ¼ ð1;�10Þ; if x > 0:5;
where P ¼ q2. In this example, the same grid (200 zones) is used and the viscosity coefficient is e ¼ 10Dn; c0 ¼ 1. The post-
shock density is 10.5576.

Fig. 8 compares the results of a shock collision problem for isentropic equations computed by two different methods. The
numerical results show that Godunov method has strong oscillations, while artificial viscosity method has almost free oscil-
lations. Of course, if increasing shock strength such as UL ¼ ð1;100Þ; UR ¼ ð1;�100Þ and keeping the viscosity be invariable,
the postshock oscillation in the artificial viscosity will still be generated. If we increase viscosity correspondingly, for exam-
ple, e ¼ 50Dn, the postshock oscillations vanish once more.

6. Extend to rarefaction waves

From the energy argument based on the shock profiles, we conjecture that the same behavior occurs for a viscous rare-
faction wave. For the jump type initial data satisfying single rarefaction wave condition, the solution includes not only stable
viscous solution but an entropy error and other perturbation. Although lacking of analytic solution like (10) to provide ex-
plicit relative energy and relative momentum, we still use an example to illustrate the entropy error.

Case 6.1. Consider a Riemann (123) problem with initial data
UL ¼ ðq;u; P; EÞL ¼ ð1;�2;0:4;3Þ; if x < 0:5;

UR ¼ ðq;u; P; EÞR ¼ ð1;2;0:4;3Þ; if x > 0:5;
where the specific heat ratio is 1.4.

The exact solution consists of two symmetric rarefaction waves and a trivial contact wave of zero speed; the contact dis-
continuity region between the nonlinear waves is close to vacuum, which makes this problem a suitable test for assessing
the performance of numerical methods for low density flows [26]. The performance of Godunov’s method is generally quite
satisfactory as regards the physical variables u and P, but not so much for the specific internal energy, see Fig. 9(b). People
usually regard that both pressure and density are close to zero and thus small errors will be exaggerated by their ratio. Here
we ascribe it to too much overheating error. Fig. 9 compares some solutions of artificial viscosity and Godunov method with
different spatial steplength. The viscosity in artificial viscosity method is implemented constrainedly whether it treats shock
or rarefaction wave. They exhibit the similar form and show that the error source is the same. In classical artificial viscosity
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method viscosity is usually taken to zero in region of rarefaction wave, so entropy errors do not appear. The dot line in
Fig. 9(a) is the result without viscosity. For Godunov method, cell average of flow variables introduces viscosity naturally,
so entropy error is inevitable (Fig. 9(b)).
7. The methods to ameliorate or eliminate entropy error

Since the entropy error and momentum error are caused by the viscosity in the numerical scheme, reducing the viscosity
as much as possible or diffusing perturbation will ameliorate even eliminate this type of error.

Two types of methods can completely eliminate viscous error. One is the Random Choice Method (RCM) introduced by
Glimm [27] and developed by Chorin and co-workers [28–31], another is shock tracking method [32,14]. Both of them adopt
exact solutions of local Riemann problems. After solving a Riemann problem at the interface of two cells, RCM uses a random
sampling procedure to pick up states instead of averaging the resulting solutions over grid cell to assign to the next time
level. The basic idea of shock tracking method is splitting a computational cell containing a shock wave along the trajectory
of the shock. The split shock cell becomes two subcells: one is entirely upstream of the shock and the other is entirely down-
stream. It avoids taking an integral average on a shock grid cell. The entropy errors are eliminated completely, and shock has
infinite resolution in these two kinds of methods. But these methods confront similar embarrassment when problems with
complex equation of state are solved. Moreover, the extension to multidimensional cases is very difficult in Lagrangian
formulation.
7.1. High order scheme

In order to reduce the acoustic wave error and overheating error in fluid calculation, we require a high order interpolation
in scheme to make the discontinuity between left state UL and right state UR as small as possible. For von Neumann viscosity
method, the truncation errors on space and time have attained 2nd order accuracy, and implementing higher order scheme
in a stagger grid is no longer easy. For Godunov method, there are a variety of reconstruction procedures available to increase
the formal order of spatial and time accuracy of the method. In our experiments, we have chosen the high resolution scheme
from wave propagation method [33].

Solving a system (20) including three-wave families gives the flux as
Fjþ1=2 ¼ F U�jþ1=2


 �
þ 1

2

X3

p¼1

sp
jþ1=2

��� ��� 1� Dt
Dn
jsp

jþ1=2j
� 	fW p

jþ1=2; ð32Þ
where U�jþ1=2 is the state on contact discontinuity from exact Riemann solver. Wp
jþ1=2 is the pth wave arising in the solution to

the Riemann problem at njþ1=2, which propagates at the speed sp
jþ1=2. It satisfies
Ujþ1 � Uj ¼
X3

p¼1

Wp
jþ1=2;
and
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Fjþ1 � Fj ¼
X3

p¼1

sp
jþ1=2Wp

jþ1=2: ð33Þ
When the pth wave is shock wave (jump), sp
jþ1=2 is the shock velocity in Lagrangian coordinate. When the pth wave is contact

wave, sp
jþ1=2 ¼ 0. However, rarefaction waves do not have a single wave speed sp

jþ1=2 to use in (32). Instead, the characteristic
speed kp varies continuously through the rarefaction wave. Here we adopt an average speed, e.g. sp ¼ 0:5 kp

l þ kp
r

� �
. kp

l ; kp
r are

speed of rarefaction wave head and tail. The concrete formulation can be found in Appendix B. fW p
jþ1=2 is a limited version of

wave Wp
jþ1=2,
fW p
jþ1=2 ¼ / hp

jþ1=2


 �
Wp

jþ1=2; ð34Þ
hp
jþ1=2 should be some measure of the smoothness of the pth characteristic component of the solution. It is easily obtained by

comparing this jump with Wp
Jþ1=2 in the same family at the neighboring Riemann problem in the upwind direction. Denote
J ¼
j; if sp

jþ1=2 > 0;

jþ 1; if sp
jþ1=2 < 0;

(
ð35Þ
then
hp
jþ1=2 ¼

Wp
jþ1=2 	W

p
Jþ1=2

Wp
jþ1=2 	W

p
jþ1=2

: ð36Þ
/ is a high resolution limiter, for example, /ðhÞ ¼ minmodð1; hÞ.
The use of high order scheme for a rarefaction wave and a single shock wave problems all can achieve certain effects. Figs.

9(b) and 10 include the second order results in rarefaction wave and shock wave, respectively. The overheating errors are
significantly reduced in amplitude using the second order scheme. However, in high resolution TVD schemes, the reconstruc-
tion of numerical fluxes or conservation quantities need to meet TVD property. It is well known such scheme gives rather
poor accuracy at extreme, even though the solution is smooth [34]. When the shock of collision reflection problem is com-
puted, the slope of reconstructed function near the reflected wall is 0, and the method degenerates into first order accuracy,
so overheating error is difficult to decline. ENO (essentially non-oscillatory) techniques [35,36] and PHM (piecewise hyper-
bolic method) [37] use a local adaptive stencil to obtain information automatically from regions of smoothness when the
solution develops discontinuities. They give a reconstruction that allows smooth peaks to be better represented over time.
We believe they should be able to obtain better results. However the ability to reduce entropy errors by high resolution
methods is limited, they can lessen the amount of the entropy error than first order scheme, but cannot eliminate such
errors.

7.2. Dissipative scheme

According to analysis in this paper, the entropy error and acoustic wave error in Godunov method for adiabatic equations
seem inevitable. Redistributing these errors to whole solution is an effective way in obtaining reliable results. Among the
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Fig. 10. Numerical solutions to Noh problem with different Godunov methods.
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different shock-capturing methods, HLL or Local Lax Friedrichs (LLF) scheme [16] may be the most effective one to suppress
overheating errors and postshock oscillations. In fact, these methods assume that a wave configuration for the solution con-
sists of two-waves separating three constant states, and the HLL flux can be expressed by
FHLL
jþ1

2
¼

s3
jþ1=2Fj � s1

jþ1=2Fjþ1 þ s1
jþ1=2s3

jþ1=2ðUjþ1 � UjÞ
s3

jþ1=2 � s1
jþ1=2

;

where sp
jþ1=2 ðp ¼ 1;2;3Þ is the wave velocity as described in Section 7.1, whose formulae can be found in Appendix B for the

adiabatic model.
For this flux form, the modified equations of HLL scheme are the same as (28), in which the viscous terms include snn; unn

and Enn. For an initial discontinuous shock data, the relative momentum and relative energy in viscous solution will result in
a perturbation generated. On the one hand, in the interaction of these dissipative terms (snn; unn and Enn), the perturbation is
smoothed out and the overheating errors are dissipated to whole solution. But on the other hand, the amount of viscosity in
numerical scheme may be very large. The actual effect of these two factors depends on problems and cannot counteract in
general, so entropy errors may still exist. Using high order HLL (LLF) scheme can modify the numerical results furthermore
but the ability may be limited. Fig. 11 gives numerical solutions to 123 problem, and the strong entropy errors show that the
viscosity in numerical solution is still too much. In addition, there exists other disadvantage using HLL scheme: the contact
discontinuity cannot be captured sharply. When the fluids include different materials, how to distinguish sharp material
interface is no longer easy and natural.
7.3. Hybrid scheme

It has a long history in computational hydrodynamics to combine a dissipative solver with a less dissipative one. Quirk [3]
described a method to combine Roe scheme and other more dissipative solvers to control certain instabilities. Donat and
Marquina [38] combined HLL scheme and other scheme to capture shock reflection and made very good results. The merit
of such method is that it does not need to increase the absolute level of dissipation. The key point is when and where to use a
Riemann solver in preference to another.

Here a simple hybrid scheme in Lagrangian coordinate is proposed. First we apply Godunov method in mass and momen-
tum equations, and use HLL method in energy equation, then we will use high resolution scheme to implement calculation.
The concrete scheme can be found in Appendix B. The basic idea is that since the entropy errors come from relative energy,
and the dissipation should be set in energy equation. Of course, this hybrid method is not the best one to compute many
problems. We can devise a more elaborate hybrid scheme to alleviate viscosity and obtain better results, such as using
the HLL type Riemann solver locally in energy equation. But for the purpose of exhibiting a mechanism to suppress overheat-
ing phenomenon the simple method is enough. Figs. 10 and 11 illustrate the ability to calculate shock and rarefaction wave.
In both cases, the entropy errors are suppressed very well.

For a general initial value problem, the hybrid scheme should show more numerical dissipation near contact discontinu-
ity than classical Godunov and the artificial viscosity method, but higher resolution than HLL scheme. Here we consider two
shock tube problems and compare the specific internal energies in different numerical schemes: the Godunov’s second order
method in conjunction with exact Riemann and HLL solvers, von Neumann viscosity method, and hybrid method.
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Fig. 11. Numerical solutions to 123 problem with different HLL methods.
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Case 7.1. Consider a Riemann (Sod [39]) problem with initial data
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UL ¼ ðq;u; PÞL ¼ ð1;0;1:0Þ; if x < 0:4;

UR ¼ ðq;u; PÞR ¼ ð0:125;0;0:1Þ; if x > 0:4:
Case 7.2. Consider a Riemann (shock collision [21]) problem with initial data
UL ¼ ðq;u; PÞL ¼ ð5:99924;19:5975;460:894Þ; if x < 0:4;

UR ¼ ðq;u; PÞR ¼ ð5:99242;�6:19633;46:0950Þ; if x > 0:4;
where for each case the specific heat ratio is 1.4.

Fig. 12 gives some numerical results on Sod problem, in which computing domain is [0,1] and initial uniform physical
grid cells (200 zones) are adopted as Dx ¼ 0:005. The viscosity coefficient in each grid cell i for von Neumann method is
ei ¼ 1:5Dni ¼ 1:5q0

i Dx. The results show that the traditional Lagrangian methods have very good resolution on contact wave
except overheating error. The hybrid scheme keeps high resolution for shock and cancels wall heating errors very well as
predicted by the previous analysis. But it has a smeared contact wave like the HLL scheme although it is slightly better than
the HLL one.
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Fig. 12. Numerical comparisons to shock collision problem with different methods. Left: energy at t = 0.25, right: magnification.
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The similar behavior is shown in Fig. 13 (Case 7.2). In this test, more grid cells (800 zones) are used due to its moving
domain. The initial computing domain is [�2,2] and the uniform physical grid spacing is Dx ¼ 0:005. The viscosity coefficient
in each grid cell i for von Neumann method is ei ¼ 8Dni. The hybrid scheme diffuses the contact wave and overcomes the
overheating error. In addition, it has an obvious advantage over the HLL scheme in this case.
8. Conclusions

We have analyzed the relation between viscous shock and inviscid one, and have described procedure of a viscous shock
formation and propagation with a jump type initial data. In general, a viscous shock and an inviscid shock include different
energy and momentum. The shifts between them are denoted by relative energy and relative momentum. These shifts will
result in the generation of waves in all families when a single wave Riemann problem (shock or rarefaction) is solved. Being
lack of suitable dissipation, entropy error will be generated. Employing this method, much anomalous behavior is explained
well. Some reviews are given to those methods which can ameliorate even eliminate entropy errors. A concrete suggestion is
that constructing scheme should consider both high resolution and dissipation in energy equation. Based on the understand-
ing of behavior of viscous solution, a hybrid method is proposed and exhibits very good performance in suppressing wall
heating errors. The next step is to develop an adaptive hybrid scheme in Lagrangian formulation to alleviate wall heating
error and extend to the high dimensional problems.
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Appendix A. The quadratic form viscosity

Consider Eq. (6) with quadratic form viscosity [1],
q ¼ e2qð@u=@nÞ2; if @u=@n < 0;

0; others:

(
ðA1Þ
Denote nb ¼ �na ¼ ep
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=ðcþ 1Þ

p
=2, then the steady shock transition zone is in ½na; nb�. The solutions of viscous Eq. (6) are
ðs; u; P; q; EÞ ¼ ðsa;ua; Pa;0; EaÞ; n < na þ st;

ðs; u; P; q; EÞ ¼ ðsb;ub; Pb;0; EbÞ; n > nb þ st:
ðA2Þ
If na < n� st < nb, the viscous profile of transition zone of (6) (see [40]) is
s ¼ sb þ sa

2
þ sb � sa

2
sin

ffiffiffiffiffiffiffiffiffiffiffiffi
cþ 1

2

r
n� st

e
;

u ¼ ub þ ua

2
þ ub � ua

2
sin

ffiffiffiffiffiffiffiffiffiffiffiffi
cþ 1

2

r
n� st

e
;

P þ q ¼ Pb þ Pa

2
þ Pb � Pa

2
sin

ffiffiffiffiffiffiffiffiffiffiffiffi
cþ 1

2

r
n� st

e
;

E ¼ Eb þ Ea

2
þ Eb � Ea

2
sin

ffiffiffiffiffiffiffiffiffiffiffiffi
cþ 1

2

r
n� st

e
� ðub � uaÞ2

4
cos2

ffiffiffiffiffiffiffiffiffiffiffiffi
cþ 1

2

r
n� st

e
:

ðA3Þ
Define the shock positions of viscous profiles
Z ns
s

na

ðs� saÞdnþ
Z nb

ns
s

ðs� sbÞdn ¼ 0; ðiÞZ nu
s

na

ðu� uaÞdnþ
Z nb

nu
s

ðu� ubÞdn ¼ 0; ðiiÞZ nE
s

na

ðE� EaÞdnþ
Z nb

nE
s

ðE� EbÞdn ¼ 0: ðiiiÞ
After simple algebra, there are
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ns
s ¼ ðsa � sbÞ�1

Z nb

na

ðs� sbÞdn;

nu
s ¼ ðua � ubÞ�1

Z nb

na

ðu� ubÞdn;

nE
s ¼ ðEa � EbÞ�1

Z nb

na

ðE� EbÞdn:
There are
ns
s ¼ 0; nu

s ¼ 0; nE
s ¼ �

ðub � uaÞ2

4ðEb � EaÞ
pe

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2ðcþ 1Þ

s
:

The relative distance is
dEs ¼ nE
s � ns

s ¼ �
ðub � uaÞ2

4ðEb � EaÞ
pe

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2ðcþ 1Þ

s
: ðA4Þ
The relative momentum is
dM ¼
Z ns

s

na

ðu� uaÞdnþ
Z nb

ns
s

ðu� ubÞdn ¼ 0: ðA5Þ
The relative energy is
dE ¼
Z ns

s

na

ðE� EaÞdnþ
Z nb

ns
s

ðE� EbÞdn ¼ �ðub � uaÞ2

4
pe

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2ðcþ 1Þ

s
: ðA6Þ
Appendix B. The Godunov methods in Lagrangian coordinate

We briefly introduce the Godunov methods with the exact Riemann solver for the adiabatic equation in this paper.

B.1. The representation of a Riemann solver in Lagrangian coordinate

1. Solve the exact Riemann problem with initial data Uj ¼ ðsj;uj; EjÞ and Ujþ1 ¼ ðsjþ1;ujþ1; Ejþ1Þ. Now we obtain the solutions
U�L and U�R in star region, i.e., u�; P�; q�L; c�L; E�L; q�R; c�R; E�R.

2. If the left wave is shock P� > Pj, then the signal velocity is shock velocity in Lagrangian coordinate,
s1
jþ1=2 ¼ �qjcj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cþ 1

2c
P�

Pj
þ c� 1

2c

s
:

If the left wave is rarefaction wave P� < Pj, then speeds of rarefaction wave head and tail are k1
l ¼ �qjcj, k1

r ¼ �q�Lc�L ,
respectively, and the characteristic velocity is

s1
jþ1=2 ¼ 0:5 k1

l þ k1
r

� �
:

For both shock and rarefaction wave, the left wave jump is

W1
jþ1=2 ¼ U�L � Uj ¼ s�L � sj;u� � uj; E

�
L � Ej

� �
:

3. The contact wave speed is zero, i.e., s2
jþ1=2 ¼ 0, and the wave jump is
W2
jþ1=2 ¼ U�R � U�L ¼ s�R � s�L; 0; E

�
R � E�L

� �
:

4. If the right wave is shock P� > Pjþ1, then the signal velocity is
s3
jþ1=2 ¼ qjþ1cjþ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cþ 1

2c
P�

Pjþ1
þ c� 1

2c

s
:

If the right wave is rarefaction wave P� < Pjþ1, then speeds of rarefaction wave head and tail are k3
r ¼ qjþ1cjþ1; k

3
l ¼ q�Rc�R,

respectively, and the characteristic velocity is defined by
s3
jþ1=2 ¼ 0:5 k3

l þ k3
r

� �
:

For both of the cases, the right wave jump is
W3
jþ1=2 ¼ Ujþ1 � U�R ¼ sjþ1 � s�R; ujþ1 � u�; Ejþ1 � E�R

� �
:
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B.2. The wave jump in HLL type Riemann solver

The star region is
UH
jþ1

2
¼

s3
jþ1=2Ujþ1 � s1

jþ1=2Uj þ Fj � Fjþ1

s3
jþ1=2 � s1

jþ1=2

:

The wave jump is
WH
jþ1=2 ¼ UH

jþ1
2
� Uj;0;Ujþ1 � UH

jþ1
2


 �T
:

B.3. The Godunov method in Lagrangian formulation

For a given domain [0,L] and an initial mesh size Dx0
j , we first set the initial conditions U0

j ¼ ðs0
j ;u

0
j ; E

0
j Þ at time t = 0. The

mass in each cell Dnj ¼ q0
j Dx0

j . Then, for each time step n, we perform the following operations:

Step(I): Boundary conditions. This is carried out by adding some ghost cells, just like traditional Euler method.
Step(II): Solution of Riemann problem. For each pair of data states Un

j and Un
jþ1, compute the solution of Riemann problem

and compute: particle velocity and pressure u�; P�, wave speeds sp
jþ1=2, and wave jumps Wp

jþ1=2; p ¼ 1;2;3, see
previous B1 part for detail.

Step(III): Computation of time step,
Dt 6 Ccfl
Dnj

max
j
�s1

jþ1=2; s
3
jþ1=2


 � ;
where a choice of Ccfl is made at the beginning of the computations.
Step(IV): Computation of flux F ¼ ð�u; P; PuÞ. For the first order Godunov method,
FG1
jþ1=2 ¼ ð�u�; P�; P�u�ÞT : ðB1Þ

For the first order HLL type method,

FH1
jþ1

2
¼

s3
jþ1=2Fj � s1

jþ1=2Fjþ1 þ s1
jþ1=2s3

jþ1=2ðUjþ1 � UjÞ
s3

jþ1=2 � s1
jþ1=2

: ðB2Þ

For the second order Godunov method,

FG2
jþ1=2 ¼ FG1

jþ1=2 þ
1
2

X3

p¼1

sp
jþ1=2

��� ��� 1� Dt
Dnj

sp
jþ1=2

��� ���� 	fW p
jþ1=2: ðB3Þ

where fW p
jþ1=2 is a limited version wave Wp

jþ1=2, see (34)–(36).For the second order HLL type method,

FH2
jþ1=2 ¼ FH1

jþ1=2 þ
1
2

X3

p¼1

sp
jþ1=2

��� ��� 1� Dt
Dn

sp
jþ1=2

��� ���� 	fW H;p
jþ1=2; ðB4Þ

where the definition of a limited version fW H
jþ1=2 is the same as (34)–(36).For the second order Hybrid method

FHYB;1
jþ1=2 ¼ FG2;1

jþ1=2; FHYB;2
jþ1=2 ¼ FG2;2

jþ1=2; FHYB;3
jþ1=2 ¼ FH2;3

jþ1=2: ðB5Þ
Step(V): Computation of new grid position.
xnþ1
jþ1=2 ¼ xn

jþ1=2 � DtF1
jþ1=2:
Step(VI): Updating of solution.
Unþ1
j ¼ Un

j þ
Dt
Dn

Fjþ1=2 � Fj�1=2
� �

:

To keep geometrical conservation, we update the density as

qnþ1
j ¼ Dn= xnþ1

jþ1=2 � xnþ1
j�1=2


 �
:

Step(VII): Next time level. Go to (I).
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